The ROM Mummy Project – 30+ Years of Progress

Introduction

The beginnings of the Royal Ontario Museum can be traced back to the excavations and collections of Charles Trick Currelly, a staff member of the Egyptian Exploration Fund in the early 1900s. Currelly excavated with Sir Flinders Petrie at Abydos and with Edouard Naville at Deir el Bahari. With the assistance of Robert Mond and others, Currelly amassed a rich and diverse collection that became the basis for the ROM, which opened its doors in 1914. Part of that collection included several Egyptian mummies (Currelly 1971).

The Egyptological holdings at the ROM include eight mummies: one dating to the Predynastic Period, five from the Pharaonic Period, one from the Roman Period and one without context. Two of these, Nakht and Djedmaatesankh, have been well studied by Peter Lewin and associates, while three more are the subjects of the current investigation. The objectives of this poster are to review the work and accomplishments of the previous research, to describe the preliminary results of the current research project and to outline directions for future work.

Nakht

Peter Lewin oversaw 30+ years of research focused on this collection of mummies and accomplished several "Firsts" for mummy studies. In 1974 he led the autopsy of Nakht, a mummy with a particularly fine coffin, who dated to the XXIInd Dynasty. This undertaking was inspired by the autopsy of PUM –II (Lewin 1977), performed in 1973 by A. Cockburn and the Paleopathology Association (Cockburn et al. 1998).

Nakht's autopsy brought together a diverse and talented group of medical and Egyptological researchers who found that Nakht was an adolescent male who had suffered episodes of child hood infectious disease, had granule particles in his lungs, schistosome and tapeworm cysts in several organs and cirrhosis of the liver, probably secondary to the parasitic infestation. They also noted that he had been given a very cursory embalming without the use of natron, all his organs (including his brain) were still in situ, and the body had apparently been wrapped before it had fully desiccated. These results shed new light on the life and afterlife of a poor weaver who had served in the temple of User-khau-re (see Hart et al. 1977 and accompanying papers).

Firsts

Lewin & Harwood Nash (1977) were the first researchers to use the then new technology of Computerized Axial Tomography (CT) to look at the internal structure of mumified tissue when they analyzed Nakht's brain. At that time, CT body scanners had only been in use in North America for about 2 years. Later, researchers at the Hospital for Sick Children in Toronto were the first to use newly developed software introduced into the thorax and passed through the edge of new technological developments in medical imaging.

Djedmaatesankh

Djedmaatesankh is a mummy encased in a coffin who dates to the XXIIInd Dynasty. The hieroglyphs suggest that she was a musician at temple of Amun Re at Karnak. She was scanned first in 1977 (Lewin 1978), then again in 1994 at the Hospital for Sick Children (Melcher et al. 1997). Analysis of the CT scans reveals that her embalming was much more elaborate than Nakht's, including the removal of her brain and internal organs and the excision of all Kind's mummies. The major pathological finding was an extensive dental infection that included a large radicular cyst (*). It is considered to be quite likely that this condition severely affected her life and likely led to her death.

Current Research

In 2007, mummy research on ROM mummies moved into a new phase, with the beginning of a collaborative project involving the ROM and The University of Western Ontario. The purpose of the new project is to build on the work already done by including 3 new mummies, to construct osteobiographies for these 3 individuals and to bring new developments in imaging physics to bear on mummy studies. Some of the preliminary results of this work are presented here.

The three mummies chosen for this project are ROM 910.5.3, a XXIstd dynasty individual with a coffin indicating that it belonged to a low-ranking priest known as a "wab priest". The second is ROM 910.13, a Roman period infant with an exquisite painted coffins. The third is an unaccepted infant mummy. These mummies were CT scanned at London Health Sciences Centre on 3 separate occasions during 2007/2008. In addition, digital x-rays were taken of the infant mummies.

The “Babies”

Both the infants were determined to be very young. The unnumbered individual was approximately 9 months old, while 910.13 was less than 6 months old. The internal organs of both mummies appear to have been removed. The bones of 910.13 are out of order, while those of 910.13 are out of order, a condition found in other mummies that suggests that the mummy was violently disturbed when its joints were brittle after it was desiccated. The unnumbered individual has a piece of wood that was introduced into the thorax and passed through the base of the skull that functioned to keep the skull in position.

Ongoing Research

What began 30+ years ago as a collaborative, multidisciplinary project focused on a mummy autopsy has now shifted to be a collaborative, multidisciplinary project focused on minimally invasive methods of obtaining information from these valuable specimens. Ongoing projects include:

• Isotopic analysis of a small sample of exposed hair of 910.5.3: δ13C = -20.3, δ14N = 14.6. These figures are consistent with a C3 diet (wheat, barley, fruits, vegetables) and with an origin in a Nile Valley site.

• Dual energy scans – we are working to apply methods developed in medical and small animal imaging to automate segmentation on the basis of repeat scans at different energy levels. This technique has great promise for mummy studies in general (Friedman et al. 2008).

• Identification of wood – we are investigating the possibility of identifying wood at the species level on the basis of its CT characteristics. This would allow us to identify the wood used in the unnumbered individuals as well as other artifacts enclosed in wrappings or coffins.

• Optimization of image quality by minimizing signal to noise ratios.

• We hope to use these studies to form the basis of a collaborative mummy database, based on GÉS’s internet based Picture Archive Communication System (application in to CFI).

see handout for references and acknowledgements
Citation


Literature Cited


Acknowledgements

Current research:

Core funding for this project was provided by Dr. Brian Timney (Dean of Social Science, University of Western Ontario), Dr. Carol Herbert (Schulich School of Medicine, UWO) and Dr. Ted Hewitt, Vice-President Research (UWO). Scan time was generously donated by the London Health Sciences Centre. The Northern Casket Company (Lindsay, ON) kindly provided the shipping crates for the mummies. Additional funds were provided by the lead author’s Faculty Scholar Grant and from the Department of Anthropology’s mummy outreach program.

In addition, we would like to acknowledge:

- from the Royal Ontario Museum: Cathy Stewart and the staff of the conservation department, Nur Bahal and Krzysztof Grzymski.
- from the London Health Sciences Centre: Douglas Brunton, Eadie Deaville, Paul Howarth, Sheila MacDonald, Barb Mylemans, Barb Smith and Trevor Szekeres.
- the Department of Anthropology, UWO.